
The single impurity problem with interactions in two dimensions

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

1998 J. Phys.: Condens. Matter 10 L651

(http://iopscience.iop.org/0953-8984/10/38/001)

Download details:

IP Address: 171.66.16.210

The article was downloaded on 14/05/2010 at 17:21

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0953-8984/10/38
http://iopscience.iop.org/0953-8984
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


J. Phys.: Condens. Matter10 (1998) L651–L658. Printed in the UK PII: S0953-8984(98)96360-3
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The single impurity problem with interactions in two
dimensions

D Schmeltzer†, R Berkovits, M Kaveh and E Kogan
Jack and Pearl Resnick Institute of Advanced Technology, Department of Physics,
Bar-Ilan University, Ramat-Gan 52900, Israel

Received 30 July 1998

Abstract. We study the behaviour of a single impurity potentialVimp within a combined
method of renormalization group and bosonization in two dimensions. For repulsive interactions
the 2KF backscattering components of the impurity potential are enhanced with respect to the
other angles. We estimate the corrections to the conductivity as a function ofEF /T . For
EF /T →∞ we obtain similar results as in the non-interacting case. At finite temperatures, we
obtain results controlled by the interactions. Here we identify a range of temperatures in which
the conductivity increases with the lowering of the temperature.

The problem of interaction and disorder in low-dimensional systems has become a popular
subject. Theoretically it has been shown in one dimension that for a single impurity,
interactions can lead to delocalization [1]. For repulsive interactions an enhancement [2] of
the density of states might arise in addition to localization. For many impurities, a metal
insulator transition driven by attractive interactions has been obtained in one dimension
[3]. In two dimensions, the common belief was that non metal–insulator transition is
possible. This belief has been challenged by Finkelstein [4] who emphasized that two-body
interactions become important forT → 0 and might affect the transition.

Recent experiments [5] confirm the possibility of a metal–insulator transition in two
dimensions when the two-body interaction is large and the Fermi energyEF is comparable
to the temperatureT .

We will study within the renormalization group the problem of a single impurity in two
dimensions in the presence of a short-range two-body interaction. In this first attempt we
will ignore the Cooperon interactions and spin effects. We will derive a set of differential
equations for the two-body interaction and the impurity strength as a function of the scale,
` ≡ `(t) = Log(1/t), t = T/EF . We find the following results. In the absence of
interaction, the stiffness parameterK is K = 1. In the presence of the two-body interaction
K 6= 1,K = K(`) we obtainK(`) = 1− Û0 e−` whereÛ0 is the dimensionless short-range
two-body interaction (measured in units ofEF ) at the microscopic scale. The meaning
of these results is that far from the Fermi surface the two-body interaction gives rise to a
non-Fermi liquid behaviour. In the limitT → 0 (̀ → ∞) we recover the Fermi liquid
theory withK = 1. At T 6= 0 we obtainK = K(t) = 1− Û0(T /EF ). The temperature
dependence ofK will affect the scaling of the impurity potentialVimp which in the presence
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of the two-dimensional Fermi surface (FS) is described by an angular scattering potential
V (ϕ), 0 6 ϕ 6 2π . We treat separately the backscattering caseϕ = π , V (π) = g. The
scaling ofg will be different fromV (ϕ 6= π). In the absence of interaction, the effect of
g will be of the order of 1/N with respect to the total scattering and will be negligible.
The presence of interaction will suppress the angular potentialV (ϕ) and will enhance (for
repulsive interactions) the backscattering termg. The physical properties will depend on
the number of channelsN . We introduce the cutoff3 = KF and the scaling factorb = e`.
We have

N(`) = 2πKF
KF/b

= 2πb = 2π e`.

We stop scaling at̀ = `(t) which gives usN = N(t) = 2π(EF/T ). For a standard Fermi
system we haveEF/T →∞ andN →∞. The relations are not applicable to the recent
experiments [5] whereEF ∼ T .

The single impurity problem in two dimensions has been studied in the absence of
interactions [12]. The impurity potential obeys the scaling equation dV/d` = −mV 2/2π2.
In the presence of a Fermi surface the result obtained in [12] is not valid. This can be seen
from the resonance condition

1

V
= P

∫
ρ(E′)
E − E′ dE′

(whereP is the principal value). In two dimensions for a symmetric cutoff±3 aroundEF
we have:

1

V
= m

2π2
P

∫ 3

−3

dz

ω − z ω = E − EF .

Due to the symmetric cutoff we obtain dV/d` = 0. This result means that there are no
second-order corrections. As in one dimension, the interaction will modify the scaling
dimensions of the impurity potential. Therefore, we expect that the interaction will give
rise to the scaling dV/d` = F(K)V , where the functionF(K) depends on the interaction
and scattering angle. In particular, for the 2KF backscattering we obtain the same result as
in one dimension,F(K) = 1− K. Contrary to the one-dimensional case,K is not fixed
and depends on the scale. For the non 2KF scattering we obtainF(K) = 1− 1

2(K +1/K).
The combinationK and 1/K appears since the scattering involves, in the bosonic language,
the field θ and the dual fieldφ. Explicit calculation will show that the angular scattering
(different to 2KF ) has the form:

V (`(t)) ≈ Ṽ (0) exp

{
Û2

0

4

(
T

EF

)2}
.

For the 2KF backscattering we find

g(`(t)) = ĝ(0) exp

{
−Û0

(
T

EF

)}
.

We observe that forT → 0 the angular scatteringV (`(t)) is reduced and the
backscattering termsg(`(t)) are enhanced. Therefore if the angular scatteringV (`(t)) is
dominant we expect to have a metallic behaviour and the insulating behaviour is determined
by g(`(t)). We conclude that the competition between the two terms will determine the
physical behaviour.

We remark that the 2KF backscattering term is similar to the one-dimensional case with
the major difference that the weight of the 2KF terms is of the order of 1/N with respect
to the rest of the scatterings.
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Here we recognize the similarity with the system of coupled Luttinger chains (t⊥ is
the interchain hopping andt‖ the intrachain hopping). Fort‖ > t⊥ and finite temperature
we find that the one-dimensional Luttinger theory is valid at temperaturesT > t⊥. The
presence of a single impurity with matrix elementsVn,m (n 6= m being the chain index) and
g the 2KF backscattering term gives rise to the scaling equations

dVn,m
d`
=
[

1− 1

2

(
K + 1

K

)]
Vn,m

dg

d`
= [1−K]g

where K 6= 1 is the Luttinger parameter. These equations are valid forT > t⊥,
0 < ` 6 Log(t‖/t⊥). WhenT < t⊥ tunnelling will destroy the Luttinger liquid behaviour
making the scaling equations invalid.

In the remainder we will introduce a model for a single impurity in two dimensions in
the presence of interactions.

We replace the fermion fieldψ(x) =∑N/2
n=1ψn(x) by:

ψ(x) ≡
N/2∑
n=1

(eiKF n̂·xRn(x)+ e−iKF n̂·xLn(x)). (1a)

The Fermi surface (FS) is parametrized in terms ofN fermions orN/2 pairs of right and
left movers:

Rn(x) = R̂n(x‖)Zn(x⊥) Ln(x) = L̂n(x‖)Zn(x⊥). (1b)

R̂n(x‖) andL̂n(x‖), x‖ = n̂ ·x represents a 1+1 Dirac fermion [6, 8] which is bosonized as
in the one-dimensional case [7].Zn(x⊥) is a scalar function which ensures the conservation
of momentum in the transversal direction. The patch is characterized by two cutoffs
KF/b0 × KF/b0. The numbers of patchesN(b0) = 2πb0, b0 = e`0 is a function of the
cutoffKF/b0 (b0 is the reduction of the cutoff3 = KF ). Keeping only the linear dispersion
ε(K) − EF ' υF n̂ · q, we obtain the Euclidean representation of the free fermion action
[9, 10] at the scaleb0

S0 =
N/2∑
n=1

∫
dτ
∫

ddx{R+n (x, τ )[∂τ − vF n̂ · ∂]Rn(x, τ )

+L+n (x, τ )[∂τ + vF n̂ · ∂]Ln(x, τ )}. (2a)

The action in (2a) is invariant [9, 10] underKF → KF/b0 andx = x ′b0, τ = τ ′b0 if Rn
andLn obey the scaling equationsRn(x, τ ) = b−d/20 Rn(x

′, τ ′), Ln(x, τ ) = b−d/20 Ln(x
′, τ ′).

Next we consider a short range potential of strengthU . Using the decomposition given in
(1a) we find [9, 10]

Sint = K1−d
F

2bd−1
0

N∑
n=1

N∑
m=1

∫
dτ
∫

ddx{Û (n,m)ψ+n (x)ψ+m (x)ψm(x)ψn(x)}. (2b)

The two-body potential is expressed in terms of the dimensionless interaction,
U(n,m) = 31−dÛ (n,m) with 3 = KF , Û (n,m) being the dimensionless interaction. The
factor b in (2b) appears as a result of the reduced cutoffKF/b0 and rescaling of the fields
(the cutoffKF/b0 is restored toKF by rescaling the fieldsψn and replacingx = x ′b0,
τ = τ ′b0). The factorbd−1

0 is proportional toN = N(b0), the number of patches. This
allows us to treat the problem as a largeN problem. This holds for all the channels expect
the Cooperon one [10]. For the Cooperon channel we will have an extra summation which
will cancel the 1/N factor. Here we will ignore these effects. We do this for reasons of
simplicity. (We expect that the Cooperon will play an important role sinceindependentof
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the original two-body interactions in the limitT → 0 we will have attractive Cooperon
channels.)

Next we will consider the impurity potential̂Vimp(x) = Vimpδ
(d)(x). Using (1a) we

construct the actionSimp for the impurity potential

Simp = −K
1−d
F

bd−1
0

∫
dτ
∫

ddxδ(d)(x)
N/2∑
n=1

N/2∑
m=1

{V̂ (F )(n,m)[R+n (x)Rm(x)+ L+n (x)Lm(x)]

+V̂ (B)(n,m)[R+n (x)Lm(x)+ L+n (x)Rm(x)]}. (2c)

Dimensional analysis gives:V (F)(n,m) = K1−d
F V̂ (F )(n,m), V (B)(n,m) = K1−d

F V̂ (B)(n,m).
V (F)(n,m) and V (B)(n,m) are the angular components of the potentialV (ϕ).
V (ϕ) ≡ V (F)(n,m), 0< ϕ 6 π , n ·m ≡ cosϕ andV (ϕ) ≡ V (B)(n,m), π < ϕ 6 2π . We
will bosonize the action:

S = S0+ Sint + Simp.
Following the method described in [8, 11] we define:

: R+n (x+ ε)Rn(x+ ε) : =
ε→0

(
KF

2π

)d−1
2 1√

π
n̂ · ∂θ(R)n (x)

: L+n (x+ ε)Ln(x+ ε) : =
ε→0

(
KF

2π

)d−1
2 1√

π
n̂ · ∂θ(L)n (x). (3a)

We obtain the Kac–Mody algebra with the anomaly(KF /2π)d−1. Following the one-
dimensional scheme we replace the chiral fieldsθ(R)n andθ(L)n by the boson fieldθn and the
dual fieldφn

θn(x) = θ(R)n (x)+ θ(L)n (x) φn(x) = −θ(R)n (x)+ θ(L)n (x). (3b)

The d dimensional bosonic fieldsθn(x) are related to the one-dimensional fieldθn(x‖) by
the scalar functionZn(x⊥)

θn(x) = θ̂n(x‖)Zn(x⊥) (3c)

where〈Zn(x⊥)Zm(x ′⊥)〉 = δn,mδ(d−1)
KF

(x⊥ − x ′⊥). Making use of the relations (3a)–(3c) we

bosonize the actionS. Neglecting the Cooperon part, we defineS̃0 = S0+S(F)int . The bosonic
form of Ŝ is given by:

S̃0 =
N/2∑
n=1

∫
dω

2π

∫
ddq

(2π)d

{
1

2
θn(q, ω)

[
ω2+ ṽ2

F (n̂ · q)2
vFK(|ω/q|, Ũ )

]
θn(−q,−ω)

}
(4a)

wherevF is the renormalized Fermi velocity andK describes the two-body renormalization
of the stiffness parameter:

K(`) ≈ 1− Û (`) = 1− Û0

(b(`))d−1
b(`) = e`. (4b)

Next we bosonize the impurity action given in (2d). We will separate the diagonal term
from V̂ F (n,m) and V̂ (B)(n,m), n 6= m and the diagonal termn = m will be the ĝ(n)
backscattering term. The rule for bosonization will be as in one dimension:

Rn(x) =
√

2KF
π2

Zn(x⊥) ei
√

4πθ̂(R)n (x‖) Ln(x) =
√

2KF
π2

Zn(x⊥) e−i
√

4π θ̂ (R)n (x‖). (4c)
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Using (4c) we obtain the bosonic form ofSimp:

Simp = −K
1−d
F

bd−1

(
2KF
π

)∫
dτ
∫

ddx δ(d)KF (x)
N/2∑
n=1

N/2∑
m=1

Zn(x⊥)Zn(x⊥)Zm(x⊥)Zm(x⊥)

×{(1− δn,m)[V̂ (F )(n̂, m̂) cos
√
π(θ̂n(x‖, τ )− θ̂m(x‖, τ )) cos

√
π(φ̂(x‖τ)

−φ̂m(x‖τ))+ V̂ (B)(n,m) cos(θ̂m(x‖, τ )+ θ̂m(x‖, τ )) cos
√
π(φ̂n(x‖, τ )

−φ̂m(x‖, τ ))] + δn,m[ĝ(n) cos
√

4πθ̂n(x‖, τ )]}. (4d)

In (4d) we have separated the 2KF backscattering term from the rest and have neglected
the forward term of the form

∑
n(1/
√
π)n̂ · ∂θn(x, τ ). Such a term can be neglected since

it corresponds to the ‘first-order derivative’ which is eliminated by integration. Next we
perform renormalization group (RG) calculation of the action:S = S̃0+ Simp. We perform
a differential RG calculation following the method given in [9].

We renormalize the actionS = S̃0+ Simp:

S = S< + δ(1)S + 1
2δ
(2)S = S̃0,< + Simp,< + 1

2δ
(2)S̃0+ δ(1)Simp + 1

2δ
(2)Simp.

S< represents the action at the cutoffKF e−` and δ(1)S + 1
2δ
(2)S represents the second-

order differential correction to the action. Integrating the fields in the differential shell
d3 = KF −KF e−` we obtain the effective action

Seff = S< + 1
2〈δ(2)δimp〉δS̃0

− 1
2〈(δ(1)Simp)2〉δS̃0

. (5a)

In (5a) 〈 〉δS̃0
represents the expectation value with respect to the Gaussian action given by

(4a) in the shelld3. Next, we rescaleSeff and obtain the renormalized action̂S with b0

replaced byb = b(`) = b0(1+ d3/KF ). We obtain the following set of RG equations

dvF
d`
' 0 (6a)

k(`) = 1− Û (`) Û(`) = Û0 e−`(d−1) (6b)

dV̂ (F )

(n,m)

d`
=
[

1− 1

2

(
K + 1

K

)]
V̂ (F )(n,m) (6c)

dV̂ (B)(n,m)

d`
=
[

1− 1

2

(
K + 1

K

)]
V̂
(B)

(n,m) (6d)

dĝ(n)

d`
= [1−K]ĝ(n). (6e)

We assume that at the microscopic scaleĝ(n) = V̂ (F )(n,m) = V̂ (B)(n,m) ≡ V̂ for all the
channels.

We replace in equation (6b), 1
2(K + 1/K) ' 1+ Û2/2, 1−K ' Û by Û = Û (`). We

obtain instead of (6a)–(6e) the new set:

dÛ

d`
= −(d − 1)Û d = 2 Û (` = 0) = Û0 (7a)

dV̂

d`
= −1

2
Û2V̂ (7b)

dĝ

d`
= Û ĝ. (7c)

Next we investigate (7a)–(7c) for different cases.
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(a) The fixed point behaviour is obtained in the limitT → 0 (̀ → ∞). The set
of equations (7a)–(7c) has the fixed pointÛ (` → ∞) = 0 giving rise to the marginal
behaviour dV/d` = 0, dg/d` = 0 obtained for the non-interacting case.

(b) The general solution. Integrating the set (7a)–(7c) with the initial conditions,Û0,
V̂ (0) and ĝ(0) gives ford = 2:

Û (`) = Û0 e−` (8a)

V̂ (`) = V̂ (0) exp

{
− Û

2
0

4
(1− e−2`)

}
(8b)

ĝ(`) = ĝ(0) exp{Û0(1− e−`)}. (8c)

We introduce in (8a)–(8c) the scaling function e−` = T/EF and obtain the temperature
dependence of the scattering potential. In the high-temperature limit, we replace
1− e−` ' ` = Log(EF /T ) and 1− e2` ∼ 2 Log(EF /T ).

As a result we obtain:

V̂ (`) ' V̂ (0)
(
T

EF

)Û2
0 /2

ĝ(`) ' ĝ(0)
(
T

EF

)Û0

. (9a)

Equation (9a) shows that for repulsive interaction,̂U0 > 0, lowering the temperature
enhances the 2KF backscattering termg(`) and reducesV̂ (`) the angular scattering. In
the limit T → 0, e−` ∼ T/EF → 0 and we obtain:

V̂ (`(t)) = Ṽ (0) exp

{
Û2

0

4

(
T

EF

)2}
∼ Ṽ (0)

[
1+ Û

2
0

4

(
T

EF

)2

· · ·
]

and

ĝ(`(t)) ≈ g̃(0) exp

{
− Û0

(
T

EF

)}
∼ g̃(0)

[
1− Û0

(
T

E

)]
(9b)

where

Ṽ (0) = V̂ (0) exp

{
− Û

2
0

4

}
and g̃(0) = ĝ(0) exp{Û0}.

Equations (9a) and (9b) show that, independent of the sign of the two-body interaction, the
angular potentialV̂ (ϕ)ϕ 6= π decreases with the lowering of the temperature. On the other
hand, forϕ = π , ĝ grows with decreasing temperature (Û0 > 0) and becomes irrelevant
for Û0 < 0 (attractive interaction). In order to see the effect of the scattering, we compute
the scattering rate 1/τimp for the single impurity using the Fermi–Golden rule. Since we
consider only one impurity, we have no multiple scattering and have no way to compute
the conductivity. To overcome this difficulty, we assume that our system has an initial
conductivityG0, and we want to find what is the change in the conductivity due to a single
impurity.

We assume thatG0 is the conductivity of a system of sizeL. The effect of the impurity
is to replaceL by an effective lengthLeff

1

Leff
= 1

L
+ 1

`imp

(`imp is the elastic mean free path,`imp = vF τimp for the lifetimeτimp). Then

δG

G0
= G−G0

G0
= −L/`imp

1+ L/`imp . (10a)
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We obtain 1/τimp using the Golden rule

1

τimp(n)
= 2π

h

{ N/2∑
m=1

∣∣∣∣V (F)(n,m)

(
KF

2π

)d−1∣∣∣∣2+ N/2∑
m=1

∣∣∣∣V (B)(n,m)

(
KF

2π

)d−1∣∣∣∣2
+
∣∣∣∣g(n)(KF2π

)d−1∣∣∣∣2}D(EF ; KFb
)

(10b)

whereτimp(n) is the lifetime of the channeln (in the direction of the external field) and
D(EF ;KF/b) is the two-dimensional density of states per unit area and energy at the scale
KF/b such thatN = 2πb, b = e`. We introduce the initial values for the impurities
V̂ (0) = 2V̂imp, V̂imp = V̂ (F ) = V̂ (B) and ĝ(0) = V̂imp. We find from (10b) (replacing
V̂imp → eV̂imp wheree is the charge):

1

τimp
= e2

h

(
KF

vF

)
|V̂imp|2

[(
V̂ (`)

V̂ (0)

)2

+ e−`
(
ĝ(`)

ĝ(0)

)2]
. (10c)

In (10c) we observe that the contribution of the backscattering is reduced by a factor of
1/N ' e−` = T/EF . We substitute the solutions of̂V (`) and ĝ(`) given in (9a) and (9b).

Using (10a) we compute the corrections to the conductivityδG/G0 as a function of
−L/`imp for high temperatures using (9a):

− L

`imp
= −e

2

h
(KFL)

∣∣∣∣ V̂impvF
∣∣∣∣2[( T

EF

)Û2
0

+
(
T

EF

)1−2Û0
]
. (11a)

Equation (11a) shows that the conductivity increases as the temperature is lowered for
Û0 <

1
2. In (11a) the last term represents the contribution from the 2KF backscattering

channel. In one dimension we obtain(T /EF )−2Û0, showing clearly that whenT decreases
the conductivity decreases. In two dimensions the 2KF backscattering term is reduced by
a factor of 1/N . As a result, we obtain

1

N

(
T

EF

)−2Û0

'
(
T

EF

)1−2Û0

.

The extra factor 1/N is due to the fact that for each 2KF backscattering channel we have
N non-backscattering channels.

At low temperature, (11a) is not valid since localization will take place. Ifni is the
impurity concentration, they remain uncorrelated at short distances,d 6 di = 1/

√
ni . As a

result (11a) will not be valid for` = Log(EF /T ) > Log(diKF ). The uncorrelated impurity
approximation will not hold at temperatures

T 6 EF
(√

ni

KF

)
= VF√ni ≡ Tloc.

The results given in (11a) and the estimate of the onset of localizationTloc might be relevant
to the recent experiments [5] sinceT > Tloc.

To conclude, we have considered the single impurity problem in two dimensions with
interaction in the absence of spin and Cooperon fluctuations. We have shown that for
finite temperatures we find a range of temperatures for which the interactions control the
conductivity. For this case we observe that the conductivity increases with decreasing
temperature.

DS would like to thank A M Finkelstein for many valuable comments concerning the
problems of disorder and interactions.
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