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The single impurity problem with interactions in two
dimensions
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Jack and Pearl Resnick Institute of Advanced Technology, Department of Physics,
Bar-llan University, Ramat-Gan 52900, Israel

Received 30 July 1998

Abstract. We study the behaviour of a single impurity potentidl,, within a combined
method of renormalization group and bosonization in two dimensions. For repulsive interactions
the 2K backscattering components of the impurity potential are enhanced with respect to the
other angles. We estimate the corrections to the conductivity as a functidy p’. For

Er/T — oo we obtain similar results as in the non-interacting case. At finite temperatures, we
obtain results controlled by the interactions. Here we identify a range of temperatures in which
the conductivity increases with the lowering of the temperature.

The problem of interaction and disorder in low-dimensional systems has become a popular
subject. Theoretically it has been shown in one dimension that for a single impurity,
interactions can lead to delocalization [1]. For repulsive interactions an enhancement [2] of
the density of states might arise in addition to localization. For many impurities, a metal
insulator transition driven by attractive interactions has been obtained in one dimension
[3]. In two dimensions, the common belief was that non metal-insulator transition is
possible. This belief has been challenged by Finkelstein [4] who emphasized that two-body
interactions become important f@r — 0 and might affect the transition.

Recent experiments [5] confirm the possibility of a metal-insulator transition in two
dimensions when the two-body interaction is large and the Fermi ergrgg comparable
to the temperaturd.

We will study within the renormalization group the problem of a single impurity in two
dimensions in the presence of a short-range two-body interaction. In this first attempt we
will ignore the Cooperon interactions and spin effects. We will derive a set of differential
equations for the two-body interaction and the impurity strength as a function of the scale,
¢ = () = Log(1l/r), t = T/Er. We find the following results. In the absence of
interaction, the stiffness paramet€ris K = 1. In the presence of the two-body interaction
K #1,K = K() we obtainkK(¢) =1— Uo e~ whereUy is the dimensionless short-range
two-body interaction (measured in units &f-) at the microscopic scale. The meaning
of these results is that far from the Fermi surface the two-body interaction gives rise to a
non-Fermi liquid behaviour. In the limif' — 0 (¢ — oco0) we recover the Fermi liquid
theory withK = 1. At T # 0 we obtaink = K(t) = 1 — 00(T/EF). The temperature
dependence of will affect the scaling of the impurity potentia;,,, which in the presence
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of the two-dimensional Fermi surface (FS) is described by an angular scattering potential
V(p), 0 < ¢ < 2r. We treat separately the backscattering case n, V() = g. The
scaling ofg will be different from V(¢ # 7). In the absence of interaction, the effect of
g will be of the order of YN with respect to the total scattering and will be negligible.
The presence of interaction will suppress the angular poteviti@) and will enhance (for
repulsive interactions) the backscattering teymThe physical properties will depend on
the number of channels. We introduce the cutofA = K and the scaling factadr = €.
We have
27 KF
Kr/b
We stop scaling at = £(¢) which gives usN = N(¢t) = 2z (Er/T). For a standard Fermi
system we have&Zr/T — oo and N — oco. The relations are not applicable to the recent
experiments [5] wherd& ~ T.
The single impurity problem in two dimensions has been studied in the absence of
interactions [12]. The impurity potential obeys the scaling equatidpdd = —m V2/272.
In the presence of a Fermi surface the result obtained in [12] is not valid. This can be seen
from the resonance condition

i:Pf p(E)dE/

N@) = = 27b = 2n €.

\%4 E—F
(where P is the principal value). In two dimensions for a symmetric cutbff aroundEr
we have:

1 m A dg

—=_——P w=E — Ep.

V. 2r?2 J_yw-—1z

Due to the symmetric cutoff we obtainvgdd¢ = 0. This result means that there are no
second-order corrections. As in one dimension, the interaction will modify the scaling
dimensions of the impurity potential. Therefore, we expect that the interaction will give
rise to the scaling ¥/d¢ = F(K)V, where the functionF(K) depends on the interaction
and scattering angle. In particular, for th& 2 backscattering we obtain the same result as
in one dimensionF(K) = 1 — K. Contrary to the one-dimensional cagé,is not fixed

and depends on the scale. For the néf-Zcattering we obtaif' (K) = 1 — %(K +1/K).

The combinatiork and I/ K appears since the scattering involves, in the bosonic language,
the field® and the dual fieldp. Explicit calculation will show that the angular scattering
(different to 2K ) has the form:

. U ( TV
V(L) ~ V(0) exp{T<E—F) }

For the X backscattering we find

~ (T
g(@)) = (0 eXp{—Uo (E—>} .
F

We observe that forT — 0 the angular scattering/ (¢(¢)) is reduced and the
backscattering termg(¢(z)) are enhanced. Therefore if the angular scattefig(r)) is
dominant we expect to have a metallic behaviour and the insulating behaviour is determined
by g(¢(r)). We conclude that the competition between the two terms will determine the
physical behaviour.

We remark that the B backscattering term is similar to the one-dimensional case with
the major difference that the weight of th& 2 terms is of the order of /AN with respect
to the rest of the scatterings.
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Here we recognize the similarity with the system of coupled Luttinger chainss(
the interchain hopping ang the intrachain hopping). Fay > 7, and finite temperature
we find that the one-dimensional Luttinger theory is valid at temperatlires ;. The
presence of a single impurity with matrix elememts,, (n # m being the chain index) and
g the 2K backscattering term gives rise to the scaling equations

Vo _[, 1 L ds _

where K # 1 is the Luttinger parameter. These equations are validTfo> 1,
0 < £ < Log(ry/t1). WhenT < ¢, tunnelling will destroy the Luttinger liquid behaviour
making the scaling equations invalid.

In the remainder we will introduce a model for a single impurity in two dimensions in
the presence of interactions.

We replace the fermion fielg (x) = Zfl\’ﬁ 2 (x) by:
N/2 o o
Y(x) =Y (@R, (@) + e KL, (@), (12)
n=1

The Fermi surface (FS) is parametrized in termsVofermions orN /2 pairs of right and
left movers:

Ry (®) = R, (x)) Zy (x1) Ly(®) = Ly (x)) Zy (x1). (1b)

R,(x)) andL,(x), x; = /i - = represents a % 1 Dirac fermion [6, 8] which is bosonized as
in the one-dimensional case [7%,(x,) is a scalar function which ensures the conservation
of momentum in the transversal direction. The patch is characterized by two cutoffs
Kr/by x Kp/by. The numbers of patchel (bg) = 2wbg, by = € is a function of the
cutoff Kr/bg (b is the reduction of the cutofh = K ). Keeping only the linear dispersion
¢(K) — Er ~ vpn - q, we obtain the Euclidean representation of the free fermion action
[9,10] at the scaléyg

N/2
So = Z/ dr/ dx{R (x, T)[d; — vrit - IR, (z, T)

n=1

+L;1L(m7 T)[a‘[ + UFﬁ : 8]IJI’l("Ba T)} (Za)

The action in (2) is invariant [9, 10] undelKr — Kr/by andx = x'bg, T = t'bg if R,
andL, obey the scaling equatiom®, (., ) = by’ R, (', '), L, (., 7) = by **L, (@', 7).
Next we consider a short range potential of strengthUsing the decomposition given in
(1a) we find [9, 10]
Klfd N N .

S =2l D0 [ dr [ dxiOmv @ @@ @) (20)

0 n=1m=1
The two-body potential is expressed in terms of the dimensionless interaction,
Un,m) = AU, m) with A = Kz, U(n, m) being the dimensionless interaction. The
factor b in (2b) appears as a result of the reduced cufoff/by and rescaling of the fields
(the cutoff Kr/bg is restored toKr by rescaling the fieldsy, and replacinge = x'bo,
7 = 1'bg). The factorbff‘1 is proportional toN = N(bg), the number of patches. This
allows us to treat the problem as a layeproblem. This holds for all the channels expect
the Cooperon one [10]. For the Cooperon channel we will have an extra summation which
will cancel the ¥N factor. Here we will ignore these effects. We do this for reasons of
simplicity. (We expect that the Cooperon will play an important role sindependenof



L654 Letter to the Editor

the original two-body interactions in the limf — O we will have attractive Cooperon
channels.)

Next we will consider the impurity potential;,,,(z) = Vi,,6@ (z). Using (k) we
construct the actioi;,,, for the impurity potential

Kl d N/2Nj2
Simp = / dr [ &xs®@) Y Y1700 miRS @R @)+ L @)Ly @)
n=1m=1
+v<3>(n m)[R} (@) Ly () + L, (@) Ry ()]} (2¢)

Dimensional analysis gives! ¥ (n, m) = K=V E (n, m), VB (n, m) = KXV E (n, m).
VB m,m) and VB xn,m) are the angular components of the potentidlp).
Vip)=VEOm,m),0<p<m,n-m=cosp andV(p) =VEm, m), m < ¢ <2r. We
will bosonize the action:

S = SO + Sint + Simp-

Following the method described in [8, 11] we define:

d—-1

N Kr\2 1 . s
R/ (x+e€e)R,(x+e€): < o= > —ﬁn 90, (x)
+ Ke\? 1. o
Li(x+e)L,(x+e€): o ﬁn - 00,7 (x). (3a)

We obtain the Kac—-Mody algebra with the anomal,/27)?1. Following the one-
dimensional scheme we replace the chiral figltf8 and6(" by the boson field), and the
dual field ¢,

(@) =60 @) + 6" (@)  ¢u(x) = -6 (@) + 6" (). (30)
The d dimensional bosonic fields, (x) are related to the one-dimensional figldx,) by
the scalar functior?,, (x )

O (@) = 0,(x)) Zy (x1) (3c)

where (Z, (x1)Zy (x)) = 8,md§. > (x1 — x). Making use of the relations ¢3~(3c) we
bosonize the actiof. Neglecting the Cooperon part, we defifie= So+ Sf,f,). The bosonic
form of $ is given by:

N/2 2 =20n N2
c 0 +vp(-q)
So= / { On(q, >[—F - }9,,(— ,—w)} ZE)
0= <2n)d vrK (/g 0) ] " e
wherevy is the renormalized Fermi velocity arid describes the two-body renormalization
of the stiffness parameter:

A

Uo
(b(£))4=1
Next we bosonize the impurity action given ind(2 We will separate the diagonal term
from V¥ (n,m) and V® (n,m), n # m and the diagonal term = m will be the g(n)
backscattering term. The rule for bosonization will be as in one dimension:

Ry(@) =,/ Znijzn(xu &VFIRn () Ly@) =, Znijzn(xu e VEOMP (). (4o)

KO~1-U@) =1— b(t) = €. (4b)
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Using (&) we obtain the bosonic form of;,,,,:

K (2K, LMz
Sinp = b5_1< > [ EEE ) 3) SEARERCRENREACH

g

n=1m=1

< {(L = 8, ) [V (@R, 1) COSYT (B (x), T) = O (x), 7)) COSVT ((xT)

=G (X)) + VB (1, m) €080, (x), T) + O (x) 7)) COSYT (B (x). T)

—hu (x, D] + 80,m[8(n) COSVATH, (x), ]} (4d)
In (4d) we have separated thek2 backscattering term from the rest and have neglected
the forward term of the forn}_, (1//m)i - 86,(x, ). Such a term can be neglected since
it corresponds to the ‘first-order derivative’ which is eliminated by integration. Next we
perform renormalization group (RG) calculation of the actiSn= So + S;.,,. We perform

a differential RG calculation following the method given in [9].
We renormalize the actiofi = So + Sip:

S=5.48V5+ 25?8 = So.- + Simp.< + 38@S0 + 8V Sip + 58P Simp-

S- represents the action at the cutdff- e~* and sV'S + 36 S represents the second-
order differential correction to the action. Integrating the fields in the differential shell
dA = Kr — Kr et we obtain the effective action

Serr = S< 4 3(8P8imp) 55, — 3(EP Simp)?)ss, - (52)

In (5a) ()3, represents the expectation value with respect to the Gaussian action given by

(4a) in the shelld A. Next, we rescale, ;s and obtain the renormalized actishwith by
replaced byp = b(¢) = bo(1 + dA/KFr). We obtain the following set of RG equations

dvF
a =0 ()
k() =1—U() Ut) = Upe td=D (6b)
dv " 1 1

,m) _ _ = - O (F)

T, |:1 > <K + K)i| Vi¥(n, m) (6c)
dv'® 1 1

m _ |4 _ 2 Y\ o®

de |:1 2 (K + K)] V(n,m) (Gd)
BW _ 1 - k1. (69

We assume that at the microscopic sc@ie) = V) (n,m) = VB (n, m) = V for all the
channels.

We replace in equation £, (K +1/K) ~ 1+ 0?/2,1- K ~ U by U = U(¢). We
obtain instead of (@)—(6e) the new set:

dU A . A

@ ="@-vU d=2 Ui =0) = U (7a)
dv 1 npn

=0 (7b)
g .

Next we investigate @)—(7c) for different cases.
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(a) The fixed point behaviour is obtained in the linfit - 0 (¢ — o0). The set
of equations (@)—(7c) has the fixed poinﬁ(ﬂ — o00) = 0 giving rise to the marginal
behaviour & /d¢ = 0, dg/d¢ = O obtained for the non-interacting case.

(b) The general solution. Integrating the set)}A(7c) with the initial conditions,Uo,
V(0) and §(0) gives ford = 2:

U) = Uye™* (8a)
72

V(£) = V(0) exp{ - %(1- e”)} (8b)

2(6) = §(0) exp{Up(1— e™)}. (8)

We introduce in (8)—(8) the scaling function = T/E; and obtain the temperature
dependence of the scattering potential. In the high-temperature limit, we replace
1-e‘~¢=Log(Er/T) and 1— € ~ 2Log(Er/T).

As a result we obtain:

. . T \U8/2 T \0o
V() ~ V(O <E_F> &) ~ g0 (E_F> . (93)

Equation (%) shows that for repulsive interactiori/o > 0, lowering the temperature
enhances the Rr backscattering terng(¢) and reduced/ (£) the angular scattering. In
the limit 7T — 0, e* ~ T/Er — 0 and we obtain:

72 2 2 2
V() = V(0 exp{%(%) } ~ \7(0)[1+ %<E%) }

~ (T ~ (T
g®) ~ g0 exp{ - UO(E_F>} ~ 5’(0)[1 - Uo<g>] (9b)

and

where
- . U2 .
V(0) = V(0) exp{ — TO} and 2(0) = £(0) exp{Up}.

Equations (8) and (9) show that, independent of the sign of the two-body interaction, the
angular potentiaV (¢)p # = decreases with the lowering of the temperature. On the other
hand, forg¢ = 7, g grows with decreasing temperatunéo(> 0) and becomes irrelevant
for Uy < O (attractive interaction). In order to see the effect of the scattering, we compute
the scattering rate /%;,,, for the single impurity using the Fermi—Golden rule. Since we
consider only one impurity, we have no multiple scattering and have no way to compute
the conductivity. To overcome this difficulty, we assume that our system has an initial
conductivity Go, and we want to find what is the change in the conductivity due to a single
impurity.

We assume thatg is the conductivity of a system of size The effect of the impurity
is to replaceL by an effective lengttL, ¢

1 1 1

Lyr L * Cimp

(€imp is the elastic mean free path,,, = vrTin, for the lifetime,,,). Then
8G  G—Go  —L/lin,
GO B GO - 1+ L/eimp ’

(1Ca)
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We obtain ¥t;,,, using the Golden rule
1 _ & NZ/% y (Ke d_12+% ®) -
Timp (1) h 1 m\ 27 (" m

d—1,2

+ g(n)<ﬁ) }D(EF, KF) (100)

2w b
where 7;,,,(n) is the lifetime of the channet (in the direction of the external field) and
D(Er; Kr/b) is the two-dimensional density of states per unit area and energy at the scale
Kr/b such thatN = 2zb, b = e. We introduce the initial values for the impurities
V(O) = 2V,m,,, imp = = VEH = B and $(0) = V,m,, We find from (1®) (replacing
V,,,,,, — eVlm,, wheree is the charge):

1 Kr V(e)\? _z<§<ﬂ> ﬂ
— = (=L )V s > : 10c
Timp (UF )' 4 [(V(O)) e 2(0) (109

In (10c) we observe that the contribution of the backscattering is reduced by a factor of
1/N ~ et = T/Ep. We substitute the solutions &f(¢) and g(¢) given in (%) and (D).
Using (1@&) we compute the corrections to the conductivity/ G as a function of

—L/¢;, for high temperatures usingc(}a
2 02 1-20
T \° T 0
— — . 11a
|:<EF> " (EF) :| (t2)

Equation (1%) shows that the conductivity increases as the temperature is lowered for

Uy < % In (11a) the last term represents the contribution from thér2backscattering

channel. In one dimension we obtaﬂﬁ/EF)—ZUO, showing clearly that whef decreases
the conductivity decreases. In two dimensions ti&- backscattering term is reduced by
a factor of Y N. As a result, we obtain

1/ 7T 7200N T 1-20,
N\ Efr “\Er '

The extra factor AN is due to the fact that for eachkZ: backscattering channel we have
N non-backscattering channels.

At low temperature, (1d) is not valid since localization will take place. #; is the
impurity concentration, they remain uncorrelated at short distancesd; = 1/,/n;. As a
result (1) will not be valid for¢ = Log(Er/T) > Log(d; K r). The uncorrelated impurity
approximation will not hold at temperatures

T <Er <f> = Vi/ni = Tioe.

2

L 2
= ——(KFL)

imp

Zimp VF

K

The results given in (1) and the estimate of the onset of localizatin might be relevant
to the recent experiments [5] sin@e> Tj,..

To conclude, we have considered the single impurity problem in two dimensions with
interaction in the absence of spin and Cooperon fluctuations. We have shown that for
finite temperatures we find a range of temperatures for which the interactions control the
conductivity. For this case we observe that the conductivity increases with decreasing
temperature.

DS would like to thak A M Finkelstein for many valuable comments concerning the
problems of disorder and interactions.
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